
IS
S

N
 0

24
9-

63
99

a ppor t
de r echerche

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

N° 4921

Septembre 2003

THÈME 1

RAIDb: Redundant Array of Inexpensive Databases

Emmanuel Cecchet – Julie Marguerite – Willy Zwaenepoel

Unité de recherche INRIA Rhône-Alpes
655, Avenue de l’Europe, 38330 Montbonnot-St-Martin (France)
Téléphone : +33 4 76 61 52 00 – Télécopie : +33 4 76 61 52 52

RAIDb: Redundant Array of Inexpensive Databases

Emmanuel Cecchet*, Julie Marguerite†, Willy Zwaenepoel‡

Thème 1 – Réseaux et systèmes
Projet Sardes

Rapport de recherche n° 4921– Septembre 2003 - 25 pages

Abstract: Clusters of workstations become more and more popular to power data server appli-
cations such as large scale Web sites or e-Commerce applications. There has been much re-
search on scaling the front tiers (web servers and application servers) using clusters, but data-
bases usually remain on large dedicated SMP machines. In this paper, we address database per-
formance scalability and high availability using clusters of commodity hardware. Our approach
consists of studying different replication and partitioning strategies to achieve various degree of
performance and fault tolerance.
We propose the concept of Redundant Array of Inexpensive Databases (RAIDb). RAIDb is to
databases what RAID is to disks. RAIDb aims at providing better performance and fault toler-
ance than a single database, at low cost, by combining multiple database instances into an array
of databases. Like RAID, we define different RAIDb levels that provide various
cost/performance/fault tolerance tradeoffs. RAIDb-0 features full partitioning, RAIDb-1 offers
full replication and RAIDb-2 introduces an intermediate solution called partial replication, in
which the user can define the degree of replication of each database table.
We present a Java implementation of RAIDb called Clustered JDBC or C-JDBC. C-JDBC
achieves both database performance scalability and high availability at the middleware level
without changing existing applications. We show, using the TPC-W benchmark, that RAIDb-2
can offer better performance scalability (up to 25%) than traditional approaches by allowing
fine-grain control on replication. Distributing and restricting the replication of frequently written
tables to a small set of backends reduces I/O usage and improves CPU utilization of each cluster
node.

Keywords: database, cluster, fault tolerance, performance, scalability, JDBC.

* INRIA Rhône-Alpes – Projet Sardes – Emmanuel.Cecchet@inrialpes.fr
† ObjectWeb consortium – INRIA Rhône-Alpes – Julie.Marguerite@inrialpes.fr
‡ EPF Lausanne – IN - Ecublens, CH-1015 Lausanne, Switzerland – willy.zwaenepoel@epfl.ch

INRIA

RAIDb: Redundant Array of Inexpensive Databases

Résumé: Les grappes de machines deviennent de plus en plus utilisées comme plateforme
d’exécution pour les applications de type serveur de données comme les sites Web à grande
échelle ou les applications de commerce électronique. Beaucoup de travaux de recherche ont été
menés pour passer à l’échelle les tiers frontaux (serveurs Web et serveurs d’application) en utili-
sant des grappes, mais les bases de données restent hébergées sur de grosses machines multipro-
cesseurs dédiées à cette tâche. Notre approche consiste à étudier différentes stratégies de répli-
cation et de partitionnement pour obtenir différents niveaux de perforrmance et de tolérance aux
fautes.
Nous proposons le concept intitulé Redundant Array of Inexpensive Databases (RAIDb).
RAIDb est aux bases de données ce que RAID est aux disques. RAIDb a pour but de fournir une
meilleure performance et tolérance aux fautes qu’une seule base de données, à faible coût, en
combinant plusieurs instances de base de données en une matrice de bases de données. Comme
RAID, nous définissons plusieurs niveaux de RAIDb qui fournissent différents compromis entre
coût, performance et tolérance aux fautes. RAIDb-0 utilise le partitionnement complet, RAIDb-
1 offre la réplication complète et RAIDb-2 introduit une solution intermédiaire appelée réplica-
tion partielle, dans laquelle l’utilisateur peut définir le degré de réplication de chaque table de la
base de données.
Nous présentons une implémentation Java de RAIDb appelée Clustered JDBC ou C-JDBC. C-
JDBC fournit à la fois le passage à l’échelle des performances et la haute disponibilité de la base
de donnée, au niveau intergiciel, sans changer les applications existantes. Nous montrons, en
utilisant le test de performance TPC-W, que RAIDb-2 offre un meilleur passage à l’échelle des
performances (jusqu’à 25%) que les approches traditionnelles en permettant un contrôle à grain
fin de la réplication. Distribuer et restreindre la réplication des tables accédées fréquemment en
écriture à un petit ensemble de machines, réduit les entrées/sorties et améliore l’utilisation du
processeur sur chaque nœud de la grappe.

Mots clés: base de données, grappe, tolérance aux fautes, performance, passage à l’échelle,
JDBC.

RAIDb: Redundant Array of Inexpensive Databases 3

RR n° 4921

1 Introduction
Nowadays, database scalability and high availability can be achieved, but at very high ex-

pense. Existing solutions require large SMP machines or clusters with a Storage Area Network
(SAN) and high-end RDBMS (Relational DataBase Management Systems). Both hardware and
software licensing cost makes those solutions only available to large businesses.

In this paper, we introduce the concept of Redundant Array of Inexpensive Databases
(RAIDb), in analogy to the existing RAID (Redundant Array of Inexpensive Disks) concept,
that achieves scalability and high availability of disk subsystems at a low cost. RAID combines
multiple inexpensive disk drives into an array of disk drives to obtain performance, capacity and
reliability that exceeds that of a single large drive [7]. RAIDb is the counterpart of RAID for
databases. RAIDb aims at providing better performance and fault tolerance than a single data-
base, at a low cost, by combining multiple database instances into an array of databases.

RAIDb primarily targets low-cost commodity hardware and software such as clusters of work-
stations and open source databases. On such platforms, RAIDb will be mostly implemented as a
software solution like the C-JDBC middleware prototype we present in this paper. However,
like for RAID systems, hardware solutions could be provided to enhance RAIDb performance
while still being cost effective.

Clusters of workstations are already an alternative to large parallel machines in scientific com-
puting because of their unbeatable price/performance ratio. Clusters can also be used to provide
both scalability and high availability in data server environments. Database replication has been
used as a solution to improve availability and performance of distributed databases [2, 12]. Even
if many protocols have been designed to provide data consistency and fault tolerance [4], few of
them have been used in commercial databases [21]. Gray et al. [9] have pointed out the danger
of replication and the scalability limit of this approach. However, database replication is a viable
approach if an appropriate replication algorithm is used [1, 14, 26]. Most of these recent works
only focus on full database replication. In this paper, we study and compare various data
distribution schemes, ranging from partitioning to full replication with an intermediate partial
replication solution that offers fine-grain control over replication. We propose a classification in
RAIDb levels and evaluate the performance/fault tolerance tradeoff of each solution. The three
basic RAIDb levels are: RAIDb-0 for partitioning without redundancy, RAIDb-1 for full mirror-
ing and RAIDb-2 for partial replication. We also explain how to build larger scale multi-level
RAIDb configurations by combining the basic RAIDb levels.

We propose C-JDBC, a Java middleware that implements the RAIDb concept. We evaluate
the different replication techniques using the TPC-W benchmark [24]. C-JDBC proves that it is
possible to achieve performance scalability and fault tolerance at the middleware level using any
database engine that has no native replication or distribution support. We show that partial rep-
lication offers a significant improvement (up to 25%) compared to full replication by reducing
both the communication and the I/O on the backend nodes.

The outline of the rest of this paper is as follows. Section 2 gives an overview of the RAIDb
architecture and its components. In section 3, we introduce a classification of the basic RAIDb
levels. Then, section 4 shows how to combine those basic RAIDb levels to build larger scale
RAIDb configurations. Section 5 presents C-JDBC, a Java implementation of RAIDb and sec-
tion 6 details the various RAIDb levels implementations. Section 7 describes the experimental
platform and an analysis of the benchmark workloads. Experimental results are presented in
section 8. Section 9 discusses related work and we conclude in section 10.

4 Emmanuel Cecchet et al.

INRIA

2 RAIDb architecture

2.1 Overview

One of the goals of RAIDb is to hide the distribution complexity and provide the database cli-
ents with the view of a single database like in a centralized architecture.
Figure 1 gives an overview of the RAIDb architecture. As for RAID, a controller sits in front of
the underlying resources. The clients send their requests directly to the RAIDb controller that
distributes them among the set of RDBMS backends. The RAIDb controller gives the illusion of
a single RDBMS to the clients.

RDBMS 2 RDBMS ...

RAIDb controller

RDBMS n-1RDBMS 1 RDBMS n

DB client DB client DB client

Figure 1. RAIDb architecture overview

2.2 RAIDb controller

RAIDb controllers may provide various degrees of services. The controller must be aware of the
database tables available on each RDBMS backend so that the requests can be routed (according
to a load balancing algorithm) to the right node(s) by parsing the SQL statement. This knowl-
edge can be configured statically through configuration files or discovered dynamically by re-
questing the database schema directly from the RDBMS. Load balancing algorithms can range
from static affinity-based or round-robin policies to dynamic decisions based on node load or
other monitoring-based information.
RAIDb controllers should also provide support for dynamic backend addition and removal
which is equivalent to the disks’ hot swap feature.
As RAID controllers, RAIDb controllers can offer caching to hold the replies to SQL queries.
The controller is responsible for the granularity and the coherence of the cache.
Additional features such as connection pooling can be provided to further enhance performance
scalability. There is no restriction to the set of services implemented in the RAIDb controller.
Monitoring, debugging, logging or security management services can prove to be useful for cer-
tain users.

2.3 Application and database requirements

In general, RAIDb does not impose any modification of the client application or the RDBMS.
However, some precautions have to be taken care of, such as the fact that all requests to the da-
tabases must be sent through the RAIDb controller. It is not allowed to directly issue requests to
a database backend as this might compromise the data synchronization between the backends as
well as the RAIDb cache coherency.
As each RDBMS supports a different SQL subset, the application must be aware of the requests
supported by the underlying databases. This problem can be easily handled if all RDBMS in-

RAIDb: Redundant Array of Inexpensive Databases 5

RR n° 4921

stances use the same version from the same vendor. For example, a cluster consisting only of
MySQL 4.0 databases will behave as a single instance of MySQL 4.0. Nevertheless, heteroge-
neous databases can be used with RAIDb. A mix of Oracle and PostgreSQL databases is a pos-
sible RAIDb backend configuration. In such a case, the application must use an SQL subset that
is common to both RDBMS. If the RAIDb controller supports user defined load balancers, the
user can implement a load balancer that is aware of the respective capabilities of the underlying
RDBMS. Once loaded in the RAIDb controller, the load balancer should be able to direct the
queries to the appropriate database.

3 Basic RAIDb levels
We define three basic RAIDb levels varying the degree of partitioning and replication among
the databases. RAIDb-0 (database partitioning) and RAIDb-1 (database mirroring) are similar to
RAID-0 (disk striping) and RAID-1 (disk mirroring), respectively. Like RAID-5, RAIDb-2 is a
tradeoff between RAIDb-0 and RAIDb-1. Actually, RAIDb-2 offers partial replication of the
database. We also define RAIDb-1ec and RAIDb-2ec that adds error checking to the basic
RAIDb levels 1 and 2, respectively.

3.1 RAIDb-0: full partitioning

RAIDb level 0 is similar to striping provided by RAID-0. It consists in partitioning the database
tables among the nodes. Figure 2 illustrates RAIDb-0 with an example of n database tables par-
titioned on 5 nodes. RAIDb-0 uses at least 2 database backends but there is no duplication of
information and therefore no fault tolerance guarantees.

table 2 & 3 table ...

RAIDb controller

table n-1table 1 table n

SQL requests

Figure 2. RAIDb-0 overview

RAIDb-0 allows large databases to be distributed, which could be a solution if no node has
enough storage capacity to store the whole database. Also, each database engine processes a
smaller working set and can possibly have better cache usage, since the requests are always hit-
ting a reduced number of tables. As RAID-0, RAIDb-0 gives the best storage efficiency since no
information is duplicated.
RAIDb-0 requires the RAIDb controller to know which tables are available on each node in
order to direct the requests to the right node. This knowledge can be configured statically in
configuration files or build dynamically by fetching the schema from each database.
Like for RAID systems, the Mean Time Between Failures (MTBF) of the array is equal to the
MTBF of an individual database backend, divided by the number of backends in the array. Be-
cause of this, the MTBF of a RAIDb-0 system is too low for mission-critical systems.

3.2 RAIDb-1: full replication

RAIDb level 1 is similar to disk mirroring in RAID-1. Databases are fully replicated as shown
on figure 3. RAIDb-1 requires each backend node to have enough storage capacity to hold all

6 Emmanuel Cecchet et al.

INRIA

database data. RAIDb-1 needs at least 2 database backends, but there is (theoretically) no limit
to the number of RDBMS backends.

Full DB Full DB

RAIDb controller

Full DBFull DB Full DB

SQL requests

Figure 3. RAIDb-1 overview

The performance scalability will be limited by the capacity of the RAIDb controller to effi-
ciently broadcast the updates to all backends. In case of a large number of backend databases, a
hierarchical structure like those discussed in section 4 would give better scalability.
Unlike RAIDb-0, the RAIDb-1 controller does not need to know the database schema, since all
nodes are capable of treating any request. However, if the RAIDb controller provides a cache, it
will need the database schema to maintain the cache coherence.
RAIDb-1 provides speedup for read queries because they can be balanced over the backends.
Write queries are performed in parallel by all nodes, therefore they execute at the same speed as
the one of a single node. However, RAIDb-1 provides good fault tolerance, since it can continue
to operate with a single backend node.

3.3 RAIDb-1ec

To ensure further data integrity, we define the RAIDb-1ec level that adds error checking to
RAIDb-1. Error checking aims at detecting Byzantine failures [15] that may occur in highly
stressed clusters of PCs [10]. RAIDb-1ec detects and tolerates failures as long as a majority of
nodes does not fail. RAIDb-1 requires at least 3 nodes to operate. A read request is always sent
to a majority of nodes and the replies are compared. If a consensus is reached, the reply is sent
to the client. Else the request is sent to all nodes to reach a quorum. If a quorum cannot be
reached, an error is returned to the client.
The RAIDb controller is responsible for choosing a set of nodes for each request. Note that the
algorithm can be user defined or tuned if the controller supports it. The number of nodes always
ranges from the majority (half of the nodes plus 1) to all nodes. If all nodes are chosen, it results
in the most secure configuration but the performance will be the one of the slowest backend.
This setting is a tradeoff between performance and data integrity.

3.4 RAIDb-2: partial replication

RAIDb level 2 features partial replication which is an intermediate solution between RAIDb-0
and RAIDb-1. Unlike RAIDb-1, RAIDb-2 does not require any single node to host a full copy
of the database. This is essential when the full database is too large to be hosted on a node’s
disks. Each database table must be replicated at least once to survive a single node failure.
RAIDb-2 uses at least 3 database backends (2 nodes would be a RAIDb-1 solution).
Figure 4 gives an example of a RAIDb-2 configuration. The database contains 3 tables x, y and
z. The first database backend contains the full database, whereas the other nodes host only one
or two tables. There is a total of 3 copies for table x and y, and 2 copies for table z. Whichever
node fails, it is still possible to retrieve the data from the surviving nodes.

RAIDb: Redundant Array of Inexpensive Databases 7

RR n° 4921

table x table y

RAIDb controller

table x & yFull DB table z

SQL requests

Figure 4. RAIDb-2 overview

Like for RAIDb-0, RAIDb-2 requires the RAIDb controller to be aware of the underlying data-
base schemas to route the request to the appropriate set of nodes.
Typically, RAIDb-2 is used in a configuration where no or few nodes host a full copy of the
database and a set of nodes host partitions of the database to offload the full databases. RAIDb-
2 can be useful with heterogeneous databases. An existing enterprise database using a commer-
cial RDBMS could be too expensive to fully duplicate both in term of storage and additional
licenses cost. Therefore, a RAIDb-2 configuration can add a number of smaller open-source
RDBMS hosting smaller partitions of the database to offload the full database and offer better
fault tolerance. In figure 4’s example, the first backend node on the left could be the commercial
RDBMS and the 4 other nodes, smaller open-source databases. These 4 RDBMS can handle a
large set of requests and even fail over the large database.
As RAID-5, RAIDb-2 is a good tradeoff between cost, performance and data protection.

3.5 RAIDb-2ec

Like for RAIDb-1ec, RAIDb-2ec adds error checking to RAIDb-2. Three copies of each table
are needed in order to achieve a quorum. RAIDb-2ec requires at least 4 RDBMS backends to
operate. The choice of the nodes that will perform a read request is more complex than in
RAIDb-1ec due to the data partitioning. However, nodes hosting a partition of the database may
perform the request faster than nodes hosting the whole database. Therefore RAIDb-2ec might
perform better than RAIDb-1ec.

3.6 RAIDb levels performance/fault tolerance summary

Figure 5 gives an overview of the performance/fault tolerance tradeoff offered by each RAIDb
level:

• RAIDb-0 offers in the best case the same fault tolerance as a single database. Performance
can be improved by partitioning the tables on different nodes, but scalability is limited to
the number of tables and the workload distribution among the tables.

• RAIDb-1 gives in the worst case the same fault tolerance as a single database, and per-
formance scales according to the read/write distribution of the workload. On a write-only
workload, performance can be lower than for a single node. At the opposite extreme, a
read-only workload will scale linearly with the number of backends.

• RAIDb-1ec provides at least the same fault tolerance as RAIDb-1, but performance is low-
ered by the number of nodes used to check each read query.

• RAIDb-2 offers less fault tolerance than RAIDb-1, but it scales better on write-heavy
workloads by limiting the updates broadcast to a smaller set of nodes.

• RAIDb-2ec has better fault tolerance than RAIDb-2 but comes at the price of lower performance and
a larger number of nodes.

8 Emmanuel Cecchet et al.

INRIA

Figure 5. RAIDb performance/fault tolerance tradeoff

4 Composing RAIDb levels

4.1 Vertical scalability

It is possible to compose several RAIDb levels to build large-scale configurations. As a RAIDb
controller may scale only to a limited number of backend databases, it is possible to cascade
RAIDb controller to support a larger number of RDBMS.

table x & ytable w

RAIDb-0 controller

table z

RAIDb-1 controller

SQL requests

table x table y

RAIDb-0 controller

table z

table w table y

RAIDb-0 controller

table x & z

table w

Figure 6. Example of a RAIDb-1-0 composition

Figure 6 shows an example of a 2-level RAIDb composition. The first level RAIDb-1 controller
acts as if it had 3 full database backends. At the second level, each full database is implemented

Worst
Best

Performance

Fa
ul

t t
ol

er
an

ce

Best

Single
database

 RAIDb-1

RAIDb-0

RAIDb-2

RAIDb-1ec

RAIDb-2ec

RAIDb: Redundant Array of Inexpensive Databases 9

RR n° 4921

by a RAIDb-0 array with possibly different configurations. Such a composition can be denoted
RAIDb-1-0.
Figure 7 gives an example of the same database using a RAIDb-0-1 composition. In this case,
the database is partitioned in 3 sets that are replicated using RAIDb-1 controllers. A top level
RAIDb-0 controller balances the requests on the 3 underlying RAIDb-1 controllers.

table x & ytable x & y

RAIDb-1 controller

table x & y

RAIDb-0 controller

SQL requests

table w table w

RAIDb-1 controller

table z

RAIDb-1 controller

table z

Figure 7. Example of a RAIDb-0-1 composition

There is potentially no limit to the depth of RAIDb compositions. It can also make sense to cas-
cade several RAIDb controllers using the same RAIDb levels. For example, a RAIDb-1-1 solu-
tion could be envisioned with a large number of mirrored databases. The tree architecture of-
fered by RAIDb composition offers a more scalable solution for large database clusters espe-
cially if the RAIDb controller has no network support to broadcast the writes.
As each RAIDb controller can provide its own cache, a RAIDb composition can help specialize
the caches and improve the hit rate.

4.2 Horizontal scalability
The RAIDb controller can quickly become a single point of failure. It is possible to have two or more
controllers that synchronize the incoming requests to agree on a common serializable order. Figure 8 gives
an overview of the horizontal scalability of RAIDb controllers.

Full DB

RAIDb controller

Full DBFull DB Full DB

SQL requests

RAIDb controller

Full DB

Synchronization

Figure 8. RAIDb horizontal scalability.

Backends do not necessarily have to be shared between controllers as in the above example, but
nodes that are attached to a single controller will no longer be accessible if the controller fails.

10 Emmanuel Cecchet et al.

INRIA

In the case of shared backends, only one controller sends the request to the backend and notifies
the other controllers upon completion.

5 C-JDBC: a RAIDb software implementation
JDBC™, often referenced as Java Database Connectivity, is a Java API for accessing virtually
any kind of tabular data [25]. We have implemented C-JDBC (Clustered JDBC), a Java mid-
dleware based on JDBC, that allows building all RAIDb configurations described in this paper.
C-JDBC works with any existing commercial or open source RDBMS that provides a JDBC
driver. The client application does not need to be modified and transparently accesses a data-
base cluster as if it were a centralized database. The RDBMS does not need any modification
either, nor does it need to provide distributed database functionalities. The distribution is han-
dled by the C-JDBC controller that implements the logic of a RAIDb controller.

5.1 C-JDBC overview

Figure 9 gives an overview of the different C-JDBC components. The client application uses the
generic C-JDBC driver that replaces the database specific JDBC driver. The C-JDBC controller
implements a RAIDb controller logic and exposes a single database view, called virtual data-
base, to the driver. A controller can host multiple virtual databases. In the current implementa-
tion, the drivers and the controller use sockets to communicate.
The authentication manager establishes the mapping between the login/password provided by
the client application and the login/password to be used on each database backend. All security
checks can be performed by the authentication manager. It provides a uniform and centralized
resource access control.
Each virtual database has its own request manager that defines the request scheduling, caching
and load balancing policies. The “real” databases are defined as database backends and are ac-
cessed through their native JDBC driver. If the native driver is not capable of connection pool-
ing, a connection manager can be added to perform such a task.
The C-JDBC controller also provides additional services such as monitoring and logging. The
controller can be dynamically configured and administered using an administration console that
provides XML files describing the controller configuration.

5.2 C-JDBC driver

The C-JDBC driver is a hybrid type 3 and type 4 JDBC driver [25] and it implements the JDBC
2.0 specification. All processing that can be performed locally is implemented inside the C-
JDBC driver like in a type 4 JDBC driver. For example, when a SQL statement has been exe-
cuted on a database backend, the result set is serialized into a C-JDBC driver ResultSet that
contains the logic to process the results. Once the ResultSet is sent back to the driver, the client
can browse the results locally.
All database dependent calls are forwarded to the C-JDBC controller that issues them on the
database native driver like a type 3 JDBC driver. SQL statement executions are the only calls
that are completely forwarded to the backend databases. Most of the C-JDBC driver remote
calls can be resolved by the C-JDBC controller itself without going to the database backends.
The C-JDBC driver can also transparently fail over multiple C-JDBC controllers implementing
horizontal scalability (see section 5.6). The JDBC URL used by the driver is made of a comma
separated list of ‘node/port/controller name’ followed by the database name. An example of a C-
JDBC JDBC URL is jdbc:cjdbc://node1:1099:c1,node2:1200:c2/db. When the driver re-
ceives this URL, it randomly picks up a node from the list. This allows all client applications to
use the same URL and dynamically distribute their requests on the available controllers.

RAIDb: Redundant Array of Inexpensive Databases 11

RR n° 4921

XML
configuration

file

C-JDBC Controller

MySQL

C-JDBC driver

Java client
application

(Servlet, EJB, ...)

XML engine

MySQL

Virtual database

Database
Backend

Connection
Manager

Database
Backend

Connection
Manager

Request Manager

Request Cache

Scheduler

Load balancer

MySQL
JDBC driver

MySQL
JDBC driver

Configuration
&

administration

Administration
console

RMI

Recovery
Log

Authentication Manager

Oracle

Database
Backend

Connection
Manager

Oracle
JDBC driver

Figure 9. C-JDBC overview

5.3 C-JDBC controller

The C-JDBC controller exports virtual databases to users. A virtual database has a virtual name
that matches the database name used in the client application. Virtual login names and pass-
words match also the ones used by the client. An authentication manager establishes the map-
ping between the virtual login/password and the backend real login/passwords. This allows da-
tabase backends to have different names and user access rights mapped to the same virtual data-
base.
The request manager is a major component of the C-JDBC controller that implements the
RAIDb logic. It is composed of a scheduler, a load balancer and two optional components: a
recovery log and a request cache. Each of these components can be superseded by a user-
specified implementation.
When a request comes from a C-JDBC driver, it is routed to the request manager associated to
the virtual database. The scheduler is responsible for ordering the requests according to the de-
sired isolation level. Moreover, consecutive write queries may be aggregated in a batch update
so that they perform better. According to the application consistency, some write queries can
also be delayed to improve the cache hit rate. Once the request scheduler processing is done, the
requests are sequentially ordered.

12 Emmanuel Cecchet et al.

INRIA

Then, an optional request cache can be used to store the result set associated to each query. We
have implemented different cache granularities ranging from table-based invalidations to col-
umn-based invalidation with various optimizations. Discussing the query cache design and per-
formance is beyond the scope of this article. Nevertheless, such a cache reduces the request re-
sponse time as well as the load on the database backends.
If no cache has been loaded or a cache miss occurred, the request finally arrives to the load bal-
ancer. RAIDb-0 or RAIDb-2 load balancers need to know the database schema of each
backend. The schema information is dynamically gathered. When the backend is enabled, the
appropriate methods are called on the JDBC DatabaseMetaData information of the backend
native driver. Database schemas can also be statically specified by the way of the configuration
file. This schema is updated dynamically on each create or drop SQL statement to reflect each
backend schema. Among the backends that can treat the request (all of them in RAIDb-1), one is
selected according to the implemented algorithm. Currently implemented algorithms are round
robin, weighted round robin and least pending requests first (the request is sent to the node that
has the least pending queries).
Once a backend has been selected, the request is sent to its native driver through a connection
manager that can perform connection pooling. The ResultSet returned by the native driver is
transformed into a serializable ResultSet that is returned to the client by means of the C-JDBC
driver.

5.4 Recovery log

C-JDBC implements a recovery log that records all write statements between checkpoints. With
each checkpoint corresponds a database dump that is generated by the administrator using the
RDBMS specific dump tool. When a backend node is added to the cluster, a dump correspond-
ing to a checkpoint is installed on the node. Then, all write queries since this checkpoint are
replayed from the recovery log, and the backend starts accepting client queries as soon as it is
synchronized with the other nodes.
The log can be stored on flat files but more interestingly into a database through JDBC. This
way, it is possible to have a fault tolerant recovery log by sending the log queries to a C-JDBC
controller that will replicate them according to the RAIDb level used. A C-JDBC controller can
send the recovery log queries to itself to use the backends to store both database data and recov-
ery log information.

5.5 C-JDBC vertical scalability

It is possible to achieve multiple RAIDb levels by re-injecting the C-JDBC driver into the C-
JDBC controller. Figure 10 illustrates an example of a 2 level RAID-x-y composition using C-
JDBC.
The top level controller has been configured for RAIDb-x with 3 database backends that are in
fact other C-JDBC controllers. The C-JDBC driver is used as the backend native driver to ac-
cess the underlying controller. Each backend is in fact a RAIDb-y array implemented by other
C-JDBC controllers. Therefore, it is possible to build any composition of RAIDb configurations
by simply configuring each C-JDBC controller with the components implementing the desired
RAIDb level. The different level C-JDBC controllers are interconnected using the C-JDBC
driver and the database native drivers are used where the real database backends are connected.

RAIDb: Redundant Array of Inexpensive Databases 13

RR n° 4921

C-JDBC Controller
(RAIDb-x)

C-JDBC
driver
JVM

Client
program C-JDBC

driver
JVM

Client
program

C-JDBC
driver
JVM

Client
program

C-JDBC driver

DB DB

DB native JDBC driver

C-JDBC Controller
(RAIDb-y)

...

DB DB

DB native JDBC driver

C-JDBC Controller
(RAIDb-y)

...

DB DB

DB native JDBC driver

C-JDBC Controller
(RAIDb-y)

...

Figure 10. C-JDBC vertical scalability

5.6 C-JDBC horizontal scalability

Horizontal scalability is what is needed to prevent the C-JDBC controller from being a single
point of failure. We use the Javagroups [3] group communication library to synchronize the
schedulers of the virtual databases that are distributed in several controllers. Figure 11 gives an
overview of the C-JDBC controller horizontal scalability.
When a virtual database is loaded in a controller, a group name can be assigned to the virtual
database. This group name is used to communicate with other controllers hosting the same vir-
tual database. There is no master/slave mechanism and all backends are truly shared.
C-JDBC relies on Javagroups’ reliable and ordered message delivery to synchronize write re-
quests and demarcate transactions. Only the schedulers contain the distribution logic and use
group communications. All other C-JDBC components remain the same.

14 Emmanuel Cecchet et al.

INRIA

MySQL

C-JDBC Controller

MySQL JDBC driver

C-JDBC driver

JVM

Client application

C-JDBC Controller

JavaGroups

MySQL

MySQL JDBC driver

MySQL

Figure 11. C-JDBC horizontal scalability

6 RAIDb implementations
C-JDBC assumes that the underlying RDBMS provides ACID properties for transactions and
that there is always at least one node that has the needed tables to execute a query. For instance,
in dynamic content servers, one of the target environments for RAIDb clusters, we know a priori
what queries are going to be issued. Therefore, it is always possible to distribute the tables in
such a way that all queries can be satisfied (essentially by making sure that for each query there
is at least one replica where we have all the tables for that query).

6.1 RAIDb-0

RAIDb-0 requires the request to be parsed to know which tables are needed to execute the re-
quest. When the RAIDb-0 load balancer initializes, it fetches the database schema from each
backend using the appropriate JDBC calls. When a request needs to be executed, the load bal-
ancer checks which backend has the tables needed by the request. As no table is replicated, only
one backend can serve each request.
When the client starts a transaction, connections are started lazily on each backend when the
first request is sent to this node. If the requests always hit the same backend, only one connec-
tion is dedicated for the transaction. In the worst case where a transaction requires data from
every backend, a connection per backend is dedicated for the transaction until it commits or
rollbacks. If a transaction spans multiple backends, the controller waits for all backends to com-
mit or rollback before notifying the client. A two-phase commit is needed to ensure that all
backends commit or rollback.
The user can define the policy to adopt for a ‘CREATE TABLE’ request, either creating the
table on a specific node or choosing one node from a set of nodes using a round-robin or ran-
dom algorithm. The load balancer dynamically updates the schema of each backend on each
create/drop statement so that requests always can be forwarded to the appropriate backends.

6.2 RAIDb-1

RAIDb-1 usually does not require parsing the requests, since all backends have a full copy of
the database and can therefore execute any query. When a client issues a CREATE TABLE
statement, the table is created on every node.

RAIDb: Redundant Array of Inexpensive Databases 15

RR n° 4921

We have implemented optimistic and pessimistic transaction-level schedulers with deadlock
detection. To detect the deadlocks, we need to know the database schema and parse the requests
to check which tables are accessed by each query. We also have a simple query level scheduler
that let the backends resolve the deadlocks.
One thread is dedicated to each backend to send write requests sequentially. The load balancer
ensures 1-copy serializability [4] and post write queries in the same order in each thread queue.
The user can define if he wants to send the result as soon as one, a majority or all backends
complete the request. If one backend fails, but others succeeded to execute the write request,
then the failing backend is disabled, because it is no more coherent. The administrator will have
to restore the database in a state corresponding to a known checkpoint (using a dump, for exam-
ple). Then the recovery log will replay all writes restarting from the checkpoint and re-enable
the backend once its state is synchronized with the other nodes.
As for the RAIDb-0 load balancer, connections are started lazily. After a write query inside a
transaction, one connection per backend has been allocated for the transaction. Transaction
commit or rollback use the same principle as write queries. The user can define if he wants only
one, a majority or all nodes to commit before returning. If one node fails to commit, but others
succeed, the failing node is automatically disabled.
Finally, read requests are executed on a backend according to a user defined algorithm. We have
implemented round-robin (RR), weighted round-robin (WRR) and least pending requests first
(LPRF) which selects the node with the fewest pending queries (which should be approximately
the less loaded node in an homogeneous environment).

6.3 RAIDb-2

Like RAIDb-0, RAIDb-2 needs to maintain a representation of each backend database schema.
The query has to be parsed to be routed to the right set of backends.
We have implemented the same set of schedulers as RAIDb-1. Read and write queries are im-
plemented almost the same way as in RAIDb-1 except that the requests can only be executed by
the nodes hosting the needed tables. The set of nodes is computed for each request to take care
of failed or disabled nodes.
Unlike RAIDb-1, when a node fails to perform a write query or to commit/rollback a transac-
tion, it is not disabled. In fact, only the tables that are no longer coherent are disabled (that is to
say, removed from the backend schema). If a commit/rollback fails on one node, all tables writ-
ten on this node during the transaction are disabled. This way, RAIDb-2 allows continued ser-
vice by a backend, after a partial failure which leaves most of its tables up-to-date.
Completion policy is also user definable and can be completely synchronous (wait for all nodes
to complete) or more relaxed by waiting only for a majority or just the first node to complete.
New database table creation policy can be defined the same way as RAIDb-0, but an additional
“set of nodes” parameter is taken into account. In RAIDb-0, the table is only created on one
node, but RAIDb-2 allows any degree of replication for a table. The user can define a set of
nodes where the table can possibly be created and a policy determining how to choose nodes in
this set. The policy can range from all nodes to a fixed number of nodes (at least 2 nodes to en-
sure fault tolerance) chosen according to a selectable algorithm (currently random and round-
robin). Those policies prove to be useful to distribute and limit the replication of created tables
in the cluster.

6.4 Current limitations

C-JDBC assumes that all databases are in a coherent state at startup. C-JDBC does not handle
the replication of databases to build the initial cluster state. An external ETL (Extraction, Trans-
formation and Loading) tool such as Enhydra Octopus [8] should be used to build the replicated
initial state.

16 Emmanuel Cecchet et al.

INRIA

RAIDb-2 controllers allow partial failures, but we do not currently support partial recovery for
failed tables. The backend must be completely disabled to restore all tables from a known
checkpoint using the recovery log.

7 Experimental environment

7.1 TPC-W Benchmark

The TPC-W specification [24] defines a transactional Web benchmark for evaluating e-
commerce systems. TPC-W simulates an online bookstore. We use the Java servlets implemen-
tation from University of Wisconsin [5] with the patches for MySQL databases. As MySQL
does not support sub-selects, each such query is decomposed as follows: the result of the inner
select is stored in a temporary table; then, the outer select performs its selection on the tempo-
rary table and drops it after completion.
The database manages ten tables: customers, address, orders, order_line, shopping_cart, shop-
ping_cart_line, credit_info, items, authors, and countries. The shopping_cart and shop-
ping_cart_line tables store the contents of each user shopping cart. The order_line, orders and
credit_info tables store the details of the orders that have been placed. In particular, order_line
stores the book ordered, the quantity and discount. Orders stores the customer identifier, the
date of the order, information about the amount paid, the shipping address and the status.
Credit_info stores credit card information such as its type, number and expiry date. The items
and authors tables contain information about the books and their authors. Customer information,
including real name and user name, contact information (email, address) and password, are
maintained in the customers and address tables.
Of the 14 interactions specified in the TPC-W benchmark specification, six are read-only and
eight have update queries that change the database state. The read-only interactions include ac-
cess to the home page, new products and best-sellers listings, requests for product detail, and
two search interactions. Read-write interactions include user registration, updates to the shop-
ping cart, two purchase interactions, two involving order inquiry and display, and two adminis-
trative updates.
TPC-W specifies three different workload mixes, differing in the ratio of read-only to read-write
interactions. The browsing mix contains 95% read-only interactions, the shopping mix 80%, and
the ordering mix 50%. The shopping mix is considered the most representative mix for this
benchmark. The database scaling parameters are 10,000 items and 288,000 customers. This cor-
responds to a database size of 350MB, which fits entirely in the main memory of database
server.

7.2 Measurement Methodology

For each workload, we use the appropriate load generator and record all SQL requests sent by
the application server to the database. The resulting trace file contains all transactions received
by the database during one hour.
We have written a multithreaded trace player that replays the trace as if requests were generated
by the application server. This way, we can test every configuration with the exact same set of
queries.
We always use a separate machine to generate the workload. The trace player emulates 150 con-
current client sessions. We first measure the throughput of a single database without C-JDBC.
Then, we evaluate the various C-JDBC configurations using a dedicated machine to run the C-
JDBC controller.
To measure the load on each machine, we use the sysstat utility [23] that every second collects
CPU, memory, network and disk usage from the Linux kernel. The resulting data files are ana-
lyzed post-mortem to minimize system perturbation during the experiments. Specific C-JDBC
controller profiling is performed in separate experiments using the OptimizeIt profiler [17].

RAIDb: Redundant Array of Inexpensive Databases 17

RR n° 4921

7.3 Software Environment

The TPC-W benchmark trace is generated using Apache v.1.3.22 as the Web server and Jakarta
Tomcat v3.2.4 [11] as the servlet server.
The Java Virtual Machine used for all experiments is IBM JDK 1.3.1 for Linux. We always use
a pessimistic transaction level scheduler in C-JDBC controllers. We experiment two different
load balancing algorithms: round-robin (RR) and least pending requests first (LPRF). All ex-
periments are performed without query caching in the controller.
We use MySQL v.4.0.8gamma [16] as our database server with the InnoDB transactional tables
and the MM-MySQL v2.0.14 type 4 JDBC driver.
All machines run the 2.4.16 Linux kernel.

7.4 Hardware Platform

We use up to six database backends. Each machine has two PII-450 MHz CPU with 512MB
RAM, and a 9GB SCSI disk drive4. In our evaluation, we are not interested by the absolute per-
formance values but rather by the relative performance of each configuration. Having slower
machines allows us to reach the bottlenecks without requiring a large number of client machines
to generate the necessary load.
A number of 1.8GHz AMD Athlon machines run the trace player and the C-JDBC controllers.
We make sure that the trace player does not become a bottleneck in any experiment. All ma-
chines are connected through a switched 100Mbps Ethernet LAN.

7.5 Configurations

7.5.1 SingleDB

This configuration directly uses the MySQL native JDBC driver on a single database backend
without using C-JDBC. This reference measurement is referred to as SingleDB in the experi-
mental reports.

7.5.2 RAIDb-0

Figure 12 summarizes the table dependencies resulting from the queries performing a join be-
tween multiple tables. Except the shopping_cart table, all tables have a relation with each other
either directly or indirectly. Therefore, the only available configuration for RAIDb-0 will be to
store all tables except shopping_cart on one node and shopping_cart on a separate node. With-
out support for distributed joins, RAIDb-0 configurations are restricted to distribution of dis-
joint tables which could lead, like in the TPC-W example, to a very poor distribution.

4 These machines could seem old but they have a CPU vs I/O ratio comparable to recent workstations.

18 Emmanuel Cecchet et al.

INRIA

customer

address countries credit_info

orders order_line

items authors

temp_table shopping_cart_line

shopping_cart

Figure 12. TPC-W table dependencies for joins.

The temporary table created for sub-selects is populated with information from the orders table,
therefore we adopt a policy where temporary tables are created on the node hosting the orders
table.

7.5.3 RAIDb-1

There is no choice about data placement with RAIDb-1 since the whole database is replicated on
each node. We present results using two different load balancing algorithms for read queries:
RAIDb-1 RR uses a simple round-robin distribution whereas RAIDb-1 LPRF uses the least
pending request first distribution defined in 6.2. For the write queries, we choose a completion
policy that returns the result as soon as one backend has completed the execution of the query.

7.5.4 RAIDb-2

Table 1 details the request distribution on the different tables for each TPC-W mix. If a request
spans over multiple tables, it is counted once for each table. Therefore the total percentage can
be greater than 100%. Total number of requests shows that for the browsing and shopping
mixes, more than 50% of the requests are joins.
It is also interesting to note that the percentage of write queries are correlated but do not corre-
spond to the percentage of write interactions. Actually, the browsing, shopping and ordering
mixes have 5, 20 and 50% of write interactions, respectively. But the resulting database write
queries represent 13, 20 and 28% of the overall requests, respectively. However, the writes dis-
tribution on database tables greatly varies according to the mix.
There is clearly a hotspot on the items table for the browsing and shopping mixes. It is also the
most accessed table but to a lesser extent for the ordering mix. Even in this last mix, the write
threshold is very moderate and as this table is involved in many joins, it will benefit from being
replicated on every node.
The authors table is the second most accessed table for the browsing and shopping mixes. Both
tables are mostly read accessed and therefore would benefit from a large replication on every
cluster node. The small read-only countries table will also benefit from a full replication. The
address table is also a read mostly table that can be replicated everywhere.
When shifting to a workload with a higher write ratio, the hits on both items and authors tables
decrease sharply whereas shopping_cart_line and customers tables get more than 45% of the
overall accesses for the ordering mix. Orders, order_line, credit_info, and shopping_cart are
write mostly tables especially for the ordering mix where some of them are nearly write only
tables. Replication of these tables has to be limited and distributed among the backends.

RAIDb: Redundant Array of Inexpensive Databases 19

RR n° 4921

Table 2 summarizes the table replication in the different RAIDb-2 configurations ranging from 3
to 6 nodes. Note that the temporary table that is used to implement sub-selects can only be cre-
ated on the nodes having a copy of the tables. The customers, address, items, authors and coun-
tries tables are replicated on all nodes. These settings apply well for the shopping and ordering
mixes, however they are not necessary for the browsing mix.
The heaviest query in term of CPU usage it the best seller query that performs a join between 5
tables (orders, order_line, items, authors and the temporary table). This query can only be exe-
cuted on the nodes having a copy of these tables. The best seller query occurs 4566, 2049 and
261 times for the browsing, shopping and ordering mixes, respectively. Restricting the orders
table replication for the browsing mix induces a performance penalty and result in load imbal-
ance. We have measured a performance drop of 42% when only half of the nodes can perform
the best seller query. Therefore we choose to replicate all tables needed for the best seller query
in the browsing mix only.

Table 1. TPC-W workload: read and write requests distribution on database tables.

Browsing mix Shopping mix Ordering mix
Table name

total read write total read write total read write

customers 4.5 % 4.1 % 0.4 % 9.0 % 7.5 % 1.4 % 21.3 % 17.5 % 3.9 %

address 1.2 % 1.1 % 0.1 % 2.8 % 2.6 % 0.2 % 7.7 % 7.4 % 0.3 %

orders 8.3 % 0.6 % 7.6 % 5.0 % 1.4 % 3.6 % 6.5 % 3.2 % 3.2 %

order_line 7.7 % 7.4 % 0.4 % 4.2 % 3.2 % 1.0 % 3.3 % 0.3 % 3.1 %

credit_info 0.5 % 0.1 % 0.4 % 1.0 % 0.3 % 0.7 % 3.1 % 0.1 % 3.1 %

items 86.7 % 86.2 % 0.5 % 80.4 % 79.4 % 1.0 % 42.8 % 39.7 % 3.1 %

authors 34.2 % 34.2 % 0 % 25.2 % 25.2 % 0 % 7.9 % 7.9 % 0 %

countries 0.6 % 0.6 % 0 % 1.7 % 1.7 % 0 % 4.1 % 4.1 % 0 %

shopping_cart 2.8 % 0.8 % 2.1 % 9.7 % 1.6 % 8.1 % 5.6 % 0.7 % 4.9 %

shop_cart_line 5.6 % 4.3 % 1.3 % 21.9 % 18.2 % 3.7 % 24.8 % 18.4 % 6.3 %

Total 152.0 % 139.2 % 12.8 % 160.8 % 141.0 % 19.8 % 127.1 % 99.3 % 27.8 %

Table 2. Database table replication for RAIDb-2 configurations.

3 nodes 4 nodes 5 nodes 6 nodes RAIDb-2
configurations 1 2 3 1 2 3 4 1 2 3 4 5 1 2 3 4 5 6

customers

address

orders

order_line

credit_info

items

authors

countries

shopping_cart

shop_cart_line

temporary table

Replicated on this
node in all mixes

Replicated in the
browsing mix only

Not replicated on this
node

20 Emmanuel Cecchet et al.

INRIA

Like for RAIDb-1, we present results using two different load balancing algorithms for read
queries: RAIDb-2 RR uses a simple round-robin distribution whereas RAIDb-2 LPRF uses the
least pending request first distribution defined in 6.2. Table creation policy uses 2 nodes chosen
using a round-robin algorithm among the nodes having a copy of orders table.

8 Experimental Results
We measure the number of SQL requests performed per minute by each configuration. We only
report the best result of three runs at the peak point for each configuration.

8.1 Browsing mix

Figure 13 shows the throughput in requests per minute as a function of the number of nodes for
each configuration using the browsing mix. As expected, the RAIDb-0 configuration with 2
nodes peaks at 138 requests per minute, just 9 requests per minute more than the single database
configuration that saturates at 129 requests per minute. The lack of distribution opportunities for
RAIDb-0 does not allow to get better performance.
RAIDb-1 RR starts with a linear speedup with a throughput of 261 requests per minute with 2
nodes. The 6 nodes configuration reaches 542 requests per minute, representing a speedup of
4.2. RAIDb-1 LPRF achieves 628 requests per minute due to a better load balancing. However,
the speedup remains below 5 with 6 nodes. This is due to the implementation of the best seller
query. The temporary table needs to be created and dropped by all nodes whereas only one will
perform the select on this table. This is a good example of the danger of replication.

Figure 13. Maximum throughput in SQL requests per minute as a function of database
backends using TPC-W browsing mix.

RAIDb-2 configurations limit the temporary table creation to 2 nodes. The results show a
better scalability with RAIDb-2 RR achieving 750 requests per minute with 6 nodes (speedup of
5.8). RAIDb-2 LPRF improves RAIDb-1 LPRF performance by 25% and achieves a small
superlinear speedup of 6.1 at 784 requests per minute. We attribute this good performance to the
better temporary table distribution and the limitation of the replication of the shopping cart
related table.

RAIDb: Redundant Array of Inexpensive Databases 21

RR n° 4921

8.2 Shopping mix

Figure 14 reports the throughput in requests per minute as a function of the number of nodes for
the shopping mix, which is often considered as the most representative workload. The single
database without C-JDBC achieves 235 requests per minute at the peak point.

Figure 14. Maximum throughput in SQL requests per minute as a function of database
backends using TPC-W shopping mix.

RAIDb-0 suffers from its unbalanced distribution and peaks at 240 requests per minute. RAIDb-
1 RR scalability is similar to the one observed for the browsing mix with a peak at 996 requests
per minute with 6 nodes. RAIDb-1 LPRF performs better mainly due to the reduction of the best
seller queries compared to the browsing mix. RAIDb-1 LPRF achieves 1188 requests per minute
with 6 nodes.
RAIDb-2 RR gives the least scalable performance. We will explain the problem using the table
replication distribution presented in table 2 with the 6 nodes configuration. When the load bal-
ancer wants to execute a query on the orders, order_line and credit_info tables and its current
index is positioned on node 1, 2 or 3, the index is moved to the next available node having these
tables, namely node 4. The same phenomenon appears with any of the shopping cart tables that
will be executed by node 1 if the index is currently on node 4, 5 or 6. We notice a ping-pong
effect of the index between nodes 1 and 4.
We can reduce this effect by alternating the table replication order. Instead of replicating shop-
ping cart related tables on nodes 1, 2 and 3 we can replicate them on nodes 1, 3 and 5. There-
fore, order related table replicas will be moved from nodes 4, 5 and 6 to nodes 2, 4 and 6. With
this new configuration, we obtain a throughput of 887 requests per minute which is better than
the previous RAIDb-2 RR configuration saturating at 820 requests per minute. But still, RAIDb-
2 with a round robin load balancing algorithm remains the least scalable configuration (among
the configurations using replication).
RAIDb-2 LPRF shows the benefits of fine grain partial replication over full replication with
1367 requests per minute at the peak point with 6 nodes. With this dynamic load balancing algo-
rithm, partial replication provides a linear speedup up to 5 nodes. The 6 nodes setup achieves a
speedup close to 5.9.

22 Emmanuel Cecchet et al.

INRIA

8.3 Ordering mix

Figure 15 shows the results for the ordering mix for each configuration. Almost all queries on
the shopping_cart table are small writes and their execution on a separate node does not im-
prove performance in the RAIDb-0 configuration.
.

Figure 15. Maximum throughput in SQL requests per minute as a function of database
backends using TPC-W ordering mix.

We observe that round robin load balancing gives poor performance for RAIDb-1 and becomes
a real bottleneck for RAIDb-2. Even when trying to reduce the ping-pong effect using the alter-
nate distribution used for the shopping mix, we obtain a throughput of 1561 requests per minute
with 6 nodes compared to 1152 requests per minute for the original RAIDb-2 RR configuration.
The load imbalance of the round robin algorithm is accentuated when the workload becomes
more write intensive. Simple algorithms such as Least Pending Request First alleviate this prob-
lem and give significantly better results. The improvement from RAIDb-1 RR to RAIDb-1
LPRF is 700 requests per minute, from 1923 to 2623 requests per minute. RAIDb-2 LPRF
achieves 2839 req/min with 6 nodes offering the best throughput of all tested configurations for
this mix

8.4 Summary

RAIDb-0 just offers database partitioning and does not provide performance scalability for
workloads having hotspots on one table.
RAIDb-1 performs well on read-mostly workloads where load can be easily balanced, however
write performance limits scalability when increasing the number of replicas.
RAIDb-2 allows to tune and control the degree of replication of each table. By limiting the write
broadcasts to smaller sets of backends, RAIDb-2 shows always better scalability (up to 25%)
over full replication when using a dynamic load balancing algorithm such as Least Pending Re-
quest First.
Round-robin load balancing provides poor performance scalability even using a cluster com-
posed of homogeneous nodes. When tables are replicated on a small number of nodes, partial
replication becomes very sensitive to load balancing. That is why round-robin is not well suited
for partial replication and it becomes a bottleneck for workloads with a high write ratio.

RAIDb: Redundant Array of Inexpensive Databases 23

RR n° 4921

0%

20%

40%

60%

80%

100%

RAIDb-1 LPRF RAIDb-2 LPRF

I/O

CPU

Figure 16. Average CPU vs I/O usage on database backends for RAIDb-1 LPRF and
RAIDb-2 LPRF configurations with 6 nodes using the shopping mix.

In all experiments, the average CPU usage on the controller node was below 8% with very little
variations between configurations.
If we profile resource usage, we observe that with read-mostly workloads and few number of
nodes, the bottleneck is the CPU on the backend nodes. The bottleneck continuously alternates
between CPU and disk I/O for workloads involving more writes. Figure 16 shows the average
distribution between I/O and CPU usage on the backend nodes for RAIDb-1 LPRF and RAIDb-
2 LPRF configurations with 6 nodes for the shopping mix.
The flexibility of partial replication (RAIDb-2) allows reducing the amount of write query
broadcasts compared to full replication (RAIDb-1). Therefore, the disk I/O are reduced by an
average 11.7% on the backends leaving more time to the CPU to process the requests.

9 Related Work
Since the dangers of replication have been pointed out by Gray et al. [9], several works have
investigated lazy replication techniques [19]. The limitations of these approaches are described
in [12]. Ongoing efforts on eager replication have also been going on with the recent release of
Postgres-R [14]. Several groups are focusing on group communications for asynchronous repli-
cation [26] or partial replication [20]. These works are performed at the database level whereas
our approach is to implement replication techniques at the middleware level independently of
the database engine.
Commercial solutions such as Oracle Real Application Clusters [18] or IBM DB2 Integrated
Cluster Environment [6] are based on a shared storage system to achieve both performance scal-
ability and fault tolerance. RAIDb targets shared nothing architectures build with commodity
hardware.
Existing works in clusters of databases mainly use full database replication. RAIDb also sup-
ports partitioning and partial replication. Postgres-R implements basic mechanisms for partial
replication [12]. Updates are broadcasted to all nodes that decide whether they have to perform
the update or not. RAIDb maintains a knowledge of each backend database schema and broad-
cast the updates only to the concerned nodes. To the best of our knowledge, our work is the first
to evaluate partial replication tradeoffs and to compare its performance with other replication
techniques.
Amza et al. have obtained good results with full replication for dynamic content web sites [2].
The approach is similar to the one used in C-JDBC but their implementation is tightly coupled
with PHP and MySQL. They do not use transaction markers but require the application pro-
grammer to introduce explicit table locks. C-JDBC does not require any application change and
can use either transaction markers or explicit locking.
Support for large number of backends usually consists in horizontal scalability where several
schedulers synchronize and cooperate [1]. C-JDBC supports both horizontal and vertical scal-
ability allowing different replication policies to be mixed.

24 Emmanuel Cecchet et al.

INRIA

10 Conclusion
We have proposed a new concept, called RAIDb (Redundant Array of Inexpensive Databases)
that aims at providing better performance and fault tolerance than a single database, at a low
cost, by combining multiple database instances into an array of databases. We have defined sev-
eral levels featuring different replication techniques: RAIDb-0 for partitioning, RAIDb-1 for full
replication and RAIDb-2 for partial replication. Additionally, two levels called RAIDb-1ec and
RAIDb-2ec provide error checking and tolerate Byzantine failures.
We have presented C-JDBC, a RAIDb software implementation in Java. We have evaluated the
performance of the different replication techniques using the TPC-W benchmark on a 6 nodes
cluster. RAIDb-0 does not allow the replication of tables that represent a hotspot of the work-
load. Therefore, performance scalability is very limited. RAIDb-1 scalability achieves a speedup
of up to 5.3 with 6 nodes but suffers from the cost of write broadcasts when the number of
backends increases. RAIDb-2 allows controlling the degree of replication of each table and pre-
vent database backends from being flooded with writes. RAIDb-2 obtains improvements up to
25% over full replication and achieves linear speedups with read-mostly workloads.
Finally, we have shown that round robin load balancing is not well suited for partial replication
especially with write intensive workloads. Simple algorithms such as Least Pending Requests
First are sufficient to obtain scalable performance with partial replication.
C-JDBC is an open-source project available for download from http://c-jdbc.objectweb.org/.

11 References
[1] Christiana Amza, Alan L. Cox, Willy Zwaenepoel – Conflict-Aware Scheduling for Dy-
namic Content Applications – Proceedings of USITS 2003, March 2003.
[2] Christiana Amza, Alan L. Cox, Willy Zwaenepoel – Scaling and availability for dynamic
content web sites – Rice University Technical Report TR02-395, 2002.

[3] Bela Ban – Design and Implementation of a Reliable Group Communication Toolkit for
Java – Cornell University, September 1998.

[4] P.A. Bernstein, V. Hadzilacos and N. Goodman – Concurrency Control and Recovery in
Database Systems – Addison-Wesley, 1987.

[5] Todd Bezenek, Trey Cain, Ross Dickson, Timothy Heil, Milo Martin, Collin McCurdy, Ravi
Rajwar, Eric Weglarz, Craig Zilles, and Mikko Lipasti – Characterizing a Java Implementation
of TPC-W – 3rd Workshop On Computer Architecture Evaluation Using Commercial Work-
loads (CAECW), January 2000.

[6] Boris Bialek and Rav Ahuja – IBM DB2 Integrated Cluster Environment (ICE) for Linux –
IBM Blueprint, May 2003.
[7] P. Chen, E. Lee, G. Gibson, R. Katz and D. Patterson – RAID: High-Performance, Reliable
Secondary Storage – ACM Computing Survey, 1994.

[8] Enhydra Octopus – http://octopus.enhydra.org/.

[9] Jim Gray, Pat Helland, Patrick O’Neil and Dennis Shasha – The Dangers of Replication and
a Solution – Proceedings of the 1996 ACM SIGMOD International Conference on Management
of Data, June 1996.

[10] Monika Henziger – Google: Indexing the Web - A challenge for Supercomputers – Pro-
ceeding of the IEEE International Conference on Cluster Computing, September 2002.

[11] Jakarta Tomcat Servlet Engine – http://jakarta.apache.org/tomcat/.

[12] Bettina Kemme– Database Replication for Clusters of Workstations – Ph. D. thesis nr.
13864, Swiss Federal Institute of Technology Zurich, 2000.

[13] Bettina Kemme and Gustavo Alonso – A new approach to developing and implementing
eager database replication protocols – ACM Transactions on Database Systems, 2000.

RAIDb: Redundant Array of Inexpensive Databases 25

RR n° 4921

[14] Bettina Kemme and Gustavo Alonso – Don’t be lazy, be consistent: Postgres-R, a new way
to implement Database Replication –Proceedings of the 26th International Conference on Very
Large Databases, September 2000.

[15] L. Lamport, R. Shostak, and M. Pease – The Byzantine Generals Problem – ACM Transac-
tions of Programming Languages and Systems, Volume 4, Number 3, July 1982.

[16] MySQL Reference Manual – MySQL AB, 2003.

[17] OptimizeIt Profiler – http://www.borland.com/optimizeit/.

[18] Oracle – Oracle9i Real Application Clusters – Oracle white paper, February 2002.

[19] E. Pacitti, P. Minet and E. Simon – Fast algorithms for maintaining replica consistency in
lazy master replicated databases –Proceedings of VLDB, 1999.

[20] A. Sousa, F. Pedone, R. Oliveira, and F. Moura – Partial replication in the Database State
Machine – Proceeding of the IEEE International Symposium on Networking Computing and
Applications (NCA’01), 2001.

[21] D. Stacey – Replication: DB2, Oracle or Sybase – Database Programming & Design 7, 12.

[22] I. Stanoi, D. Agrawal and A. El Abbadi – Using broadcast primitives in replicated data-
bases – Proceedings of ICDCS’98, May 1998.

[23] Sysstat package – http://freshmeat.net/projects/sysstat/.

[24] Transaction Processing Performance Council – http://www.tpc.org/.

[25] S. White, M. Fisher, R. Cattel, G. Hamilton and M. Hapner – JDBC API Tutorial and Ref-
erence, Second Edition – Addison-Wesley, ISBN 0-201-43328-1, november 2001.

[26] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme and G. Alonso – Database replication
techniques: a three parameter classification – Proceedings of the 19th IEEE Symposium on Reli-
able Distributed Systems (SRDS2000), October 2000.

